Thomas Lauvaux
Full Professor (Junior Chair) - Univ. of Reims Champagne Ardenne
Joint Center for History and Economics (Harvard - Sciences Po Paris)
LSCE (CEA Saclay)
PennState University Affiliate (Department of Meteorology)
Education
PhD in Climate Sciences, University of Versailles (LSCE, Saclay)
Research interests: My main research interest is to understand the roles of the biosphere and of various human activities on the carbon cycle using data assimilation techniques. By combining atmospheric greenhouse gas measurements and numerical weather models, I collect information on the exchanges of carbon from land and coastal surfaces to the atmosphere. I am particularly interested in satellite measurements and dense network of ground-based sensors to characterize carbon sources from large metropolitan areas or sinks from natural and agrilcutural landscapes.
Professional experience:
Associate Research Professor, PennState University
Research Scientist, NASA Jet Propulsion Laboratory (Caltech University)
Expertise:
- Atmospheric modeling (mesoscale, Large Eddy Simulation)
- Inversion technique (data assimilation)
- Carbon Cycle science
- Fossil fuel emissions (urban, industries)
- Remote Sensing analysis (satellite data assimilation)
Committees / Working Groups:
United Nations (WMO): IG3IS Working Group
Sciences Po Paris: Centre for History and Economics in Paris (CHEP)
Current research projects:
ICOS-Cities (EU funded, urban-scale emissions of greenhouse gases)
CATRINE (satellite monitoring of urban-scale emissions)
Methane Watch (ESA funded, Oil & Gas leak monitoring from space)
NASA OCO-3 (satellite mission on fossil fuel emissions)
MERCI-CO2 (urban emissions of CO2 in Mexico City)
AEROLAB-Space (Greenhouse gas monitoring at regional scales)
Recent Publications:
Valet, L., Abdallah, C., Lauvaux, T., Joly, L., Ramonet, M., Ciais, P., and Mouillot, F.: High soil smoldering combustion revealed by flux tower CO/CO2 ratio increases fire carbon emissions for French temperate forests during the 2022 fire season, Biogeosciences, in review.
Danjou, A., Broquet, G., Schuh, A., Bréon, F.-M., and T. Lauvaux: Optimal selection of satellite XCO2 images over cities for urban CO2 emission monitoring using a global adaptive-mesh model, Atmospheric Measurement Techniques, in review.
Baier, B. C., Miller, J. B., Sweeney, C., Lehman, S., Wolak, C., DiGangi, J. P., Davis, K. J., Barkely, Z. R., Feng, S., Lauvaux, T., and Y. Choi: Continental carbon dioxide source partitioning informed by radiocarbon: evaluation and applications, submitted to JGR-Atmos.
Guisiano, J.E., Moulines, E.,, Lauvaux, T.,, and Sublime, J.: Enhanced Oil and Gas Infrastructure Mapping: Leveraging High-Resolution Satellite Imagery through fine-tuning of pre-trained object detection models, 2023 International Conference on Neural Information Processing (ICONIP2023), Changsha, Nov. 2023.
Lian, J., Lauvaux, T., Utard, H., Bréon, F.-M., Broquet, G., Ramonet, M., Laurent, O., Albarus, I., Chariot, M., Kotthaus, S., Haeffelin, M., Sanchez, O., Perrussel, O., Denier van der Gon, H. A., Dellaert, S. N. C., and Ciais, P.: Can we use atmospheric CO2 measurements to verify emission trends reported by cities? Lessons from a six-year atmospheric inversion over Paris, EGUsphere, https://doi.org/10.5194/egusphere-2023-401, 2023.
Wesloh, D., Keller, K., Feng, S., Lauvaux, T., and K. J. Davis: Temporal error correlations in a terrestrial carbon cycle model derived by comparison to carbon dioxide eddy covariance flux tower measurements, submitted to JGR: Biogeosciences.
Chulakadabba, A., Sargent, M., Lauvaux, T., Benmergui, J. S., Franklin, J. E., Chan Miller, C., Wilzewski, J. S., Roche, S., Conway, E., Souri, A. H., Sun, K., Luo, B., Hawthrone, J., Samra, J., Daube, B. C., Liu, X., Chance, K. V., Li, Y., Gautam, R., Omara, M., Rutherford, J. S., Sherwin, E. D., Brandt, A., and Wofsy, S. C.: Methane Point Source Quantification Using MethaneAIR: A New Airborne Imaging Spectrometer, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-822, 2023.
Ouerghi, E., Ehret, T., de Franchis, C., Facciolo, G., Lauvaux, T., Meinhardt, E., and Morel, J.-M.: Automatic detection of methane point emissions on PRISMA images with a matched filter variant and deep learning, EarthVision 2023.
Peng, S., Giron, C., Liu, G., d’Aspremont, A., Benoit, A., Lauvaux, T., Lin, X., de Almeida Rodrigues, H., Saunois, M., and P. Ciais: High resolution assessment of coal mining methane emissions by satellite in Shanxi, China, iScience, in review.
Walley, S., Pal, S., Campbell, J. F., Dobler, J., Bell, E., Weir, B., et al. (2022). Airborne lidar measurements of XCO2 in a synoptically-active environment and associated comparisons with numerical simulations. Journal of Geophysical Research: Atmospheres, 127, e2021JD035664. https://doi.org/10.1029/2021JD035664
Dumont Le Brazidec, J., Vanderbecken, P., Farchi, A., Bocquet, M., Lian, J., Broquet, G., Kuhlmann, G., Danjou, A., and Lauvaux, T.: Segmentation of XCO2 images with deep learning: application to synthetic plumes from cities and power plants, Geosci. Model Dev., 16, 3997–4016, https://doi.org/10.5194/gmd-16-3997-2023, 2023.
Chen, H. W., Zhang, F., Lauvaux, T., Scholze, M., Davis, K. J., & Alley, R. B. (2023). Regional CO2 inversion through ensemble-based simultaneous state and parameter estimation: TRACE framework and controlled experiments. Journal of Advances in Modeling Earth Systems, 15, e2022MS003208. https://doi.org/10.1029/2022MS003208
Groshenry, A., Giron, C., Lauvaux, T., d'Aspremont, A., and Ehret, T.: Detecting Methane Plumes using PRISMA: Deep Learning Model and Data Augmentation, Tackling Climate Change with Machine Learning at NeurIPS 2022.
Bruley E, Mouillot F, Lauvaux T, Rambal S. Enhanced spring warming in a Mediterranean mountain by atmospheric circulation. Sci Rep. 2022 May 11;12(1):7721. doi: 10.1038/s41598-022-11837-x. PMID: 35545646; PMCID: PMC9095602.
Barkley, Z., Davis, K., Miles, N., Richardson, S., Deng, A., Hmiel, B., Lyon, D., and Lauvaux, T.: Quantification of oil and gas methane emissions in the Delaware and Marcellus basins using a network of continuous tower-based measurements, Atmos. Chem. Phys., 23, 6127–6144, https://doi.org/10.5194/acp-23-6127-2023, 2023.
Ouerghi, E., Ehret, T., de Franchis, C., Facciolo, G., Lauvaux, T., Meinhardt, E., and Morel, J.-M.: Automatic methane plumes detection in time series of sentinel-5p l1b images, Annals act as proceedings of the 2022 edition of the XXIVth ISPRS Congress, accepted.
Wu, K., Davis, K. J., Miles, N. L., Richardson, S. J., Lauvaux, T., Sarmiento, D. P., Balashov, N. V., Keller, K., Turnbull, J., Gurney, K. R., Liang, J., & Roest, G.: Source decomposition of eddy-covariance CO2 flux measurements for evaluating a high-resolution urban CO2 emissions inventory. Environmental Research Letters, 17(7), 074035. https://doi.org/10.1088/1748-9326/ac7c29, 2022.
Lauvaux, T., Giron, C., Mazzolini, M., d’Aspremont, A., Duren, R., Cusworth, D., Shindell, D., and P. Ciais: Global assessment of oil and gas methane ultra-emitters, Science, 375 (6580), 557-561, 10.1126/science.abj4351, https://www.science.org/doi/abs/10.1126/science.abj4351, 2022.
Lei, R., S. Feng, A. Danjou, G. Broquet, D. Wu, J. C. Lin, C. W. O'Dell, and T. Lauvaux: Fossil fuel CO2 emissions over metropolitan areas from space: A multi-model analysis of OCO-2 data over Lahore, Pakistan, Remote Sensing of Environment, 264, 112625, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2021.112625, 2021.
Danjou, A., Broquet, G., Lian, J., Bréon, F.-M., and T. Lauvaux: Evaluation of light atmospheric plume inversion methods using synthetic XCO2 satellite images to compute Paris CO2 emissions, Atmos. Chem. Phys., accepted with minor revisions.
Ehret, T., De Truchis, A., Mazzolini, M., Morel, J.-M., d’Aspremont, A., Lauvaux, T., and G. Facciolo: Global tracking and quantification of oil and gas methane leaks from recurrent Sentinel-2 imagery, Environmental Science & Technology, DOI: 10.1021/acs.est.1c08575, 2022.
Lei, R., Feng, S., Mueller, K., Karion, A., Garcia Renoso, J. A., Grutter, M., Ramonet, M., and T. Lauvaux: Reconciliation of asynchronous satellite based NO2 and XCO2 enhancements with mesoscale modeling over two urban landscapes, Remote Sensing of Environment, https://doi.org/10.1016/j.rse.2022.113241, 2022.